A plague mysteriously spread from Europe into Asia 4,000 years ago. Scientists now think they may know how

How did plague jump from Europe to Asia 4,000 years ago? Scientists investigate

For centuries, both historians and researchers have been intrigued by the journey of a catastrophic plague that swept through Europe into Asia approximately 4,000 years ago. This ancient illness, identified today as an early variant of the bacterium Yersinia pestis, has persisted as a notable scientific mystery. The challenge of understanding how a pathogen could cover such extensive distances during a time when transportation was restricted has been a significant question for experts. Nonetheless, cutting-edge advancements in paleogenetics are currently presenting a persuasive theory that could at last illuminate this extraordinary dispersal.

This novel theory indicates that the dissemination of the plague was not the result of a singular, explosive incident but instead through a more intricate process associated with an unexpected vector: domesticated livestock. A study published in the journal Cell reveals that an international research team successfully extracted the first ancient Yersinia pestis genome from a non-human source, specifically a 4,000-year-old domesticated sheep. This remarkable finding underscores the vital part that nomadic pastoralists and their flocks played in spreading the disease across the expansive Eurasian region.

The discovery contradicts earlier beliefs that the Bronze Age plague was mostly transmitted directly between people or through fleas and rodents, a mode of transmission that emerged much later. The ancient version of the bacteria identified in the sheep was missing the genetic components needed for transmission via fleas. Consequently, researchers propose that the illness was zoonotic, transferring from an unidentified wild animal source to domesticated animals such as sheep, and eventually to humans. The bacteria’s presence in a sheep at an archaeological location in what is now Russia, combined with a closely matching strain found in a nearby human grave, offers a significant connection.

The human element of this theory is tied to the nomadic cultures of the Eurasian Steppe. These pastoralist communities, known for their intensive livestock herding and long-distance travel, would have been in constant, close contact with their animals. Their mobile lifestyle, facilitated by the newly domesticated horse, allowed them to carry the disease from one region to another, effectively turning their herds into mobile reservoirs for the plague. The emergence of these highly mobile societies, therefore, wasn’t just a cultural revolution; it was also a major catalyst for the spread of pathogens.

This new evidence provides a more nuanced understanding of how ancient epidemics could have shaped human history. Rather than being a disease of dense urban populations, as the later Black Death was, this Bronze Age plague was a disease of a highly connected, mobile society. The discovery suggests that large-scale human migrations and the rise of pastoralism were not just drivers of cultural change and genetic mixing, but also critical factors in the geographical spread of infectious diseases.

The scientific methodology behind this discovery is a testament to the power of ancient DNA analysis. Researchers painstakingly extracted and sequenced genetic material from a large number of ancient human and animal remains. The finding of Yersinia pestis in a sheep’s tooth was a rare and pivotal breakthrough, as it marked the first time the pathogen had been found outside of human remains from this era. This technique has opened up new avenues for understanding the evolution of ancient pathogens and their interactions with both human and animal hosts.

This study also carries important consequences for contemporary epidemiology. By examining the evolution and adaptation of ancient pathogens such as Yersinia pestis to various hosts and environments, researchers can gain a deeper insight into the dynamics of current disease emergence. The insight from 4,000 years past is that the interconnection of human and animal communities, especially regarding trade and migration, consistently poses a risk factor for disease outbreaks. It highlights that pandemics have been a persistent and significant aspect of human historical development.

The story of the Bronze Age plague is far more than a tale of a single pathogen. It is a narrative that fundamentally alters our understanding of human history and migration during this pivotal era. The discovery of the pathogen’s presence at all is remarkable, given the lack of historical records from that period. However, archaeological findings have long hinted at a massive societal disruption, with evidence of widespread population collapse and shifts in burial practices, pointing to an unknown crisis that decimated communities. The new genetic evidence now offers a plausible explanation for these historical anomalies.

The team of researchers, composed of scientists from institutions across Europe, meticulously analyzed genetic material from the remains of both humans and animals across multiple Eurasian burial sites. The breakthrough came from the archaeological site in modern-day Russia’s Samara region, where the ancient sheep remains were found. This discovery was particularly significant because it provided a clear link between a non-human host and the plague, something that had previously been a missing piece of the puzzle. The presence of the bacterium in the sheep’s tooth, a part of the body that preserves DNA particularly well, was a key piece of the puzzle.

The genetic analysis revealed that this ancient strain of Yersinia pestis was a very early version of the bacterium. It lacked the specific genes, such as the Ymt gene, that enable the pathogen to survive in the guts of fleas, a prerequisite for the kind of transmission seen in the bubonic plague. This is a crucial distinction, as it implies that the disease was likely spread through direct contact with infected animals or humans, possibly through respiratory droplets (pneumonic plague). This mode of transmission would have been particularly effective within the close-knit, mobile pastoralist communities of the Eurasian Steppe, where humans and their herds lived in close proximity.

The rise of these pastoralist cultures, especially the Yamnaya people, was a major demographic event of the Bronze Age. These groups, who are the ancestors of many modern Europeans, expanded rapidly across the continent, bringing with them new technologies like the wheel and the domesticated horse. This expansion created a new kind of interconnectedness, as people and goods could travel much faster and farther than ever before. The discovery in the sheep suggests that this era of rapid human mobility inadvertently created the perfect conditions for a highly infectious disease to spread across an entire continent. The migration of people became the migration of the plague.

The effect of this old plague on societies from the Bronze Age was probably significant. As groups interacted and traveled, the illness could have quickly spread, leading to severe outbreaks within local areas. The archaeological and genetic signs of population bottlenecks and abrupt changes in burial locations during this time match perfectly with the destructive impact of a widespread epidemic. It is completely feasible that the plague served as a strong selective force, shaping the path of human evolution and the genetic composition of later populations in Europe and Asia.

The methodology used in this study, known as paleogenomics, is a testament to how far science has come in understanding the ancient world. By recovering and analyzing degraded DNA from ancient remains, scientists can now piece together a picture of not only who ancient people were, but also what diseases they faced. This work is painstaking, but the rewards are immense, offering a level of detail that was unimaginable just a few decades ago. It provides a new and powerful lens through which to view the distant past.

The study of this ancient plague is not just an academic exercise. It has direct relevance for modern public health. By understanding the evolutionary history of a pathogen as dangerous as Yersinia pestis, we can gain insights into how pathogens emerge, adapt to new hosts, and become more virulent over time. This historical perspective is invaluable for predicting and preparing for future pandemics, serving as a powerful reminder that the fight against infectious disease is a timeless challenge that has been shaping human history for millennia.

By Roger W. Watson

You May Also Like